
 1

Ch8 Inverse Scattering Problems 

 

Reference: Weng Cho Chew, Waves and Fields in Inhomogeneous Media, IEEE Press, 1994 

 

8.1 Inverse problem 

 

Inverse problems are quite important in many problems in physics. In general, inverse problem is a technique where we 

estimate physical parameters from measured data sets, which cannot directly measure the physical parameters, but it 

measures the parameters indirectly. The condition can be mathematically expressed as: 

 

( ) ( ( ))g y L f x n= +  (8.1.1) 

 

where ( )f x is a physical parameters to be estimated, ( )g y is the measured data set, L is the operator which correlate 

the physical parameters to the measurable data set and n is the random noise. Here, the operator L  and measured data 
( )g x is known, then the inverse problem estimates the parameters ( )g x . 

 

There are many examples of inverse problems in geophysics and medical engineering. Most of the geophysical 

explorations are inverse problems, where the sensors can be put on the ground surface and we estimate the location of 

mineral resources such as oil. Medical check by a doctor is also one kind of inverse problems, where the doctor measure 

or observe the patient from outside the body, and estimate the origin of the disease. In remote sensing, radar system is 

equipped on a space craft or an airplane, and measures the radar signal reflected from the objects on the ground surface. 

We will estimate the ground surface condition form the radar echo, so it is also one kind of inverse problems. 

 

8.2 Green’s function 

 

The Green’s function of a wave equation is the solution of the wave equation for a point source. Once the Green’s 

function is found, the solution due to a general source can be obtained by the principle of superposition. For example, to 

obtain the solution to the scalar wave equation: 

 

( )2 2 ( ) ( )k s∇ + Ψ =r r  (8.2.1) 

we first find a solution to the following equation: 

( )2 2 ( ) ( )k g δ∇ + = −r,r' r - r'  (8.2.2) 

Since an arbitrary source ( )s r is give by: 

( ) ( ) ( )s d s δ= ∫r r' r' r - r'   (8.2.3) 

we can obtain the solution to (8.2.1) by using (8.2.2) and (8.2.3) as: 

( ) ( , ) ( )
V

d g sΨ = −∫r r' r r' r'   (8.2.4) 

The green’s functions for simple cases can be found. For example, in homogeneous medium, the solution of (8.2.2) is 
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given as: 

 ( ) ( )
jkeg g

π

−

= =
r -r'

r,r' r - r'
4 r - r'

 (8.2.5) 

 

 

8.3 Inverse Scattering Problems 

 

In (8.1.1), L can be any kinds of operators, but it is normally determined by a physical theory, such as heat transfer or 

diffusion equations. When the operator L is related to wave propagation, the problem is called inverse scattering 

problems. Therefore, the inverse scattering problems include various problems related to electromagnetic wave, acoustic 

wave and elastic wave propagation, scattering and refraction. 

 

As an example of the operator L , now we think about a scalar 

wave case. The scalar wave equation is given as: 

2 2 ( ) ( ) ( )k r r q rφ ∇ + =   (8.3.1) 

where  
2 2( ) ( ) ( )k r r rω µ ε=  (8.3.2) 

represents an inhomogeneoius medium over the finite volume 

and  

2 2 2
b b bk k ω µ ε= =  (8.3.3) 

out side V . 

 

Next we define a Green’s function satisfying 

2 2 ( , ') ( ')bk g r r r rδ ∇ + = − −   (8.3.3) 

Then (8.3.1) can be rewritten as 

2 2 2 2( ) ( ) ( ) ( )b bk r q r k r k rφ φ   ∇ + = − −      (8.3.4) 

Note that the right-hand side of (8.3.4) can be considered as an equivalent source. Then, 
2 2( ) ' ( , ') ( ') ' ( , ') ( ) ( ')

S

b
V V

r dV g r r q r dV g r r k r k rφ φ = − + − ∫ ∫  (8.3.5) 

The first term in the right-hand side is just the field due to the source in the absence of the inhomogeneity, and hence, is 

the incident field. Therefore, (8.3.5) can be rewritten: 
2 2( ) ( ) ' ( , ') ( ) ( ')inc b

V

r r dV g r r k r k rφ φ φ = + − ∫  (8.3.6) 

 

In this formulation, we can measure the scattered field ( )rφ in the area outside the volumeV , and estimate the 

unknown parameter ( )k r . 

,b bε µ
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8.4 Linear Inverse Problems 

 

We rewrite (8.3.6) as 

( ) ( ) ' ( , ') ( ) ( ')inc
V

E r E r dr G r r O r E r= + ⋅∫  (8.4.1) 

where 

2 2( ) ( ) bO r k r k= −    (8.4.2) 

is the physical parameter to be estimated. 

 

It should be noted here that in (8.4.1) 

the field ( )E r which should be 

measured is included both in the 

left-hand term and in the integral. 

Therefore, the operator L defined by 
(8.4.1) for ( )E r  is a functional of the 

unknown ( )O r to be estimated. This 

means, the operator is not linear for the 

unknown, and this is a nonlinear 

equation. In other words, if the 

equation is linear, the scattered field 

( )E r can be expressed as a 

superposition of the scattered wave 

caused by each ( )O r , then it is proportional to ( )O r . 

 

The nonlinear dependency of the 

scattered field on ( )O r is due to the 

mutual interactions between the 

induced polarization currents. If the 

scattered field form two isolated 

scatterers are known, the total 

scattered field is not a linear 

superposition of the isolated 

scattered field as shown in Fig.9.1.2. 

The multiple scattered fields have to 

be considered, it causes the 

nonlinearity of the problem.  

 

However, if we can approximate the problem as a linear problem, we can treat the inverse problem more easily. This is 

called “linearization” of a problem. There are several conditions, where the problem can be liberalized. For example, in 
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“Born approximation”, the amplitude of the scattered field is linear, whereas, in “Rytov approximation”, the phase 

perturbation is a linear function of objects. Furthermore, another way of obtaining a liberalized relationship between data 

and the objects is to use high-frequency waves. High-frequency wave propagates in a ray-like manner and with the 

ray-optics approximation, the relation can be approximately linearlzed. X-ray is such an example. 

 

8.5 Back-Projection tomography 

 

The back-projection tomography algorithm is particularly useful when the measured phase or attenuation is linear 

function of the object, for instance, as in X-ray. The phase shift and attenuation of wave as it propagates through an 

inhomogeneous medium at high frequency can be given by: 

( ') '
b

a

j s z dz

e
ω− ∫

 (8.5.1) 

The slowness ( )s z is complex if the medium is lossy. In X-ray, we measure only the attenuation, and in ultrasound 

tomography, we measure only the delay of pulse through a body. This delay can be give by: 

( ') '
b

a

s z dzτ = ∫  (8.5.2) 

In both cases, we can assume that the ray propagates along a straight pass, and this assumption stands when the 

inhomogeneity of the medium is weak. 

 

If the object is described by its slowness or attenuation profile ( , )s x y , a single experiment then yields 

( ') ( ', ') 'P y s x y dx
∞

−∞

= ∫  (8.5.3) 

where  

where ( ', ')x y are the coordinates of the experiment shown in  Fig.9.1.3. ( )P y is the projection of the function 

( ', ')s x y .(8.5.3) can be related to two-dimensional Fourier transformation as 

( )
' ' ' '

2
1( ', ') ' ' ( ', ')

2
x yjk x jk y

x y x ys x y dk dk e S k k
π

− −= ∫∫  (8.5.5) 

Then  

( )
' '

2
1( ') ' (0, ')

2
yjk y

y yP y dk e S k
π

∞
−

−∞

= ∫ (8.5.6) 

Hence, froma single projection, a slice of the 

Fourier transform of ( , )s x y , i.e., ( ', ')S x y at 

' 0xk = , is derivable by inverse Fourier 

transforming (8.5.6). This is known as the 

projection-slice theorem. Consequently, 

' '(0, ') ' ( ')yjk y
yS k dy e P y

∞
+

−∞

= ∫  (8.5.7) 



 5

To get a different slice of the Fourier transform, we need only perform the experiment at a different angle. Therefore, by 

performing the experiment with angles ranging from 0° to180° , ( , )x yS k k will be filled out in the whole Fourier space. 

 

8.6 Diffraction tomography 

In projection tomography, we assumed that the wave propagates as straight line ray. However, it is no longer true at 

longer wavelengths, where diffraction phenomenon is important. Consider a transmitter-receiver configuration as shown 

in Fig.9.1.5. The scattered field using the first-order Born approximation in a cylindrical coordinate is then: 

( ) ' ( , ') ( ') ( ')sca R R incd g Oφ ρ ρ ρ ρ ρ φ ρ= ∫       (8.6.1) 

  

where two-dimensional scattering is assumed and 2 2
0( ')O k kρ = − , is the object to be reconstructed. Moreover, in two 

dimensions, the Green’s function is 

(2)
0 0( , ') ( ' )

4R R
jg H kρ ρ ρ ρ−

= −  (8.6.2) 

But the receiver is in the far field of the scatterer, then approximately, 
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0 0 ˆ '

0

2( , ')
4

R Rjk jk
R

R

jg e
j k

ρ ρ ρρ ρ
π ρ

− + ⋅−
−

 (8.6.3) 

Also, an incident field generated by a uniform line source is 

(2)
0 0( ') ( ' )

4inc T
j H kφ ρ ρ ρ−

= −   (8.6.4) 

and if the transmitter is also in the far field of the object we have 

0 0 ˆ '

0

2( ')
4

T Tjk jk
inc

T

j e
j k

ρ ρ ρφ ρ
π ρ

− + ⋅−
−

 (8.6.5) 

Finally, after defining 0 ˆR Rk ρ=k and 0 ˆT Tk ρ= −k  and substituting the above into (8.6.1) we have 

0 ( ) ( ) '

0

( ) ' ( ') ( ')
8

T R R Tjk j
sca R inc

T R

j e d e O
k

ρ ρ ρφ ρ ρ ρ φ ρ
π ρ ρ

− + − ⋅−
= ∫ k k  (8.6.6) 

Note that now, the integral is a Fourier-transform integral. Consequently, 

0 ( )

0

( ) ( )
8

T Rjk
sca R R T

T R

j e O
k

ρ ρφ ρ
π ρ ρ

− +−
= −k k  (8.6.7) 

where ( )O k is the Fourier transform of ( )O ρ . Therefore, the scattered field under the Born approximation is related to 

the Fourier transform of the object. 

 

Observe that the length of the vector Rk and Tk  are equal to 0k . Hence, R T−k k  or the argument of O , can only 

span a finite space in the Fourier space. For instance, if Tk  is fixed and the receiver is moved around so that Rk  

change directions, then the locus swept out by R T−k k  is as shown in Fig. 9.1.6. Furthermore, if the transmitter is 

moved around so that Tk  changes directions as well as Rk , then the combination of varying the directions of Rk and 

Tk  sweeps out a larger circle of radius 02k  with are a. 2
04 kπ . 
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It should be noted that we can acquire the Fourier spectrum of ( )O k  only for 0k≤k , only a low-pass version of 

( )O k  is retrieved in this reconstruction. 

 

It is interesting to note that when the frequency becomes very high, the locus of R T−k k  passes through the origin 

almost like a straight line, as shown in Fig. 9.1.6. This means, that we can understand that the projection tomography 

using the projection-slice theorem is a special case of diffraction tomography. Hence, in the high-frequency limit, we 

need only a sweep of receiver with a small angle, and a straight-line slice in the Fourier space is recovered. 

 

 

8.7 Finite-Source Effect 

 

In the previous section, we used a far0field approximation. The far-field approximation is valid only when 

(8.7.1) 

 

or the transmitter and the receiver are far from the size of the scatterer. However, it is not true for many GPR 

measurements. If we do not use the far-field approximation, (8.6.4) can be expanded by using a plane wave expansion of 

Hankel function, we have: 

( ' ) '1( ')
4

x T y Tjk x x jk y y
inc x

y

j dk e
k

φ ρ
π

∞
− − − −

−∞

−
∫   (8.7.2) 

Similarly, the Green’s function can be represented as: 

'( ') ' '1( , ') '
4 '

x R y Rjk x x jk y y
x

y

jg dk e
k

ρ ρ
π

∞
− − − −

−∞

−
∫   (8.7.3) 

Consequently, substituting (8.7.2) and (8.7.3) into (8.6.1) we have: 

', 'T Rρ ρ ρ ρ
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( ') ' ' ' ' ''
2

'1( , ) ' ' ( ', ')
16 '

x x y T y Rx R x T j k k x jk y y jk y yjk x jk xx x
sca R T

y y

dk dk e dx dy e O x y
k k

φ ρ ρ
π

∞ ∞
− − − − − −− +

−∞ −∞

−
= ∫ ∫ ∫   (8.7.4) 

Note that the scattered field is a function of both the transmitter and the receiver positions. But in forward scattering 

experiments, ' Ty y>  and 'Ry y>  so that the modulus signs in (8.7.4) can be removed to arrive at 

' ' ( ') ' ( ') '
2

'1( , ) ' ' ( ', ')
16 '

x R y R x T y T x x y yjk x jk y jk x jk y j k k x j k k yx x
sca R T

y y

dk dk e dx dy e O x y
k k

φ ρ ρ
π

∞ ∞
− − − + − − − −

−∞ −∞

−
= ∫ ∫ ∫  (8.7.5) 

 

Now, if ( , )sca R Tφ ρ ρ  is measured along a line in the x direction, with the transmitter also aligned in the x direction as 

shown in Fig. 9.1.8, we can transform ( , )sca R Tφ ρ ρ  in the Rx  and Tx  variables to obtain 

'

' ' '
'

1( , , , ) ( , )
4

y R y Tjk y jk y

sca x R x T x x y y
y y

ek y k y O k k k k
k k

φ
− +−

− = − + − +      (8.7.6) 

In this case, the Fourier transform of the measured field is related to the Fourier transform of the object O . 
 

From (8.7.6), note that one cannot make much use of the evanescent spectrum corresponding to the case when yk  and 

'yk  are purely imaginary. This happens when 0xk k>  and '
0xk k> , as seen from the dispersion relationships  

'2 '2 2
0x yk k k+ =  and 2 2 2

0x yk k k+ = . Therefore, it is reasonable to assume that the direction of k  and k'  only sweep 

from 0° to 180° . Since O  is a function of -k' k , the locus swept out by -k' k  with varying k'  for a fixed k  
is as shown in Fig. 9.1.9. Therefore, a forward scattering experiment alone is not enough to reconstruct the object well 

since the data in the spectral domain is not complete. Nevertheless, a band-limited reconstruction is possible. 
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On the other hand, if a back scattering experiment is performed instead, only the sings of '
yk  in (8.7.6) need to be 

changes. In this case, the area swept out by -k' k  includes a semicircular as well in the lower half x yk k  plane. To fill 

out a full circle, the experimental setting is rotated so that the two discs sweep out a circle of radius 02k . Alternatively, 

the transmitters and receivers can be switched to sweep out a full circle on the x yk k  plane. In this matter, more Fourier 

data can be collected in the Fourier space. 

 


